Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
FASEB J ; 38(8): e23621, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38651653

RESUMO

Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.


Assuntos
Senescência Celular , Treinamento de Força , Humanos , Treinamento de Força/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Senescência Celular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Biomarcadores/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Adulto , Músculo Quadríceps/metabolismo , Músculo Quadríceps/inervação
2.
Food Funct ; 15(8): 4575-4585, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587267

RESUMO

Previous studies have shown that vitamin C (VC), an essential vitamin for the human body, can promote the differentiation of muscle satellite cells (MuSCs) in vitro and play an important role in skeletal muscle post-injury regeneration. However, the molecular mechanism of VC regulating MuSC proliferation has not been elucidated. In this study, the role of VC in promoting MuSC proliferation and its molecular mechanism were explored using cell molecular biology and animal experiments. The results showed that VC accelerates the progress of skeletal muscle post-injury regeneration by promoting MuSC proliferation in vivo. VC can also promote skeletal muscle regeneration in the case of atrophy. Using the C2C12 myoblast murine cell line, we observed that VC also stimulated cell proliferation. In addition, after an in vitro study establishing the occurrence of a physical interaction between VC and Pax7, we observed that VC also upregulated the total and nuclear Pax7 protein levels. This mechanism increased the expression of Myf5 (Myogenic Factor 5), a Pax7 target gene. This study establishes a theoretical foundation for understanding the regulatory mechanisms underlying VC-mediated MuSC proliferation and skeletal muscle regeneration. Moreover, it develops the application of VC in animal muscle nutritional supplements and treatment of skeletal muscle-related diseases.


Assuntos
Ácido Ascórbico , Proliferação de Células , Músculo Esquelético , Mioblastos , Fator de Transcrição PAX7 , Regeneração , Animais , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Camundongos , Proliferação de Células/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Regeneração/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Ácido Ascórbico/farmacologia , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Fator Regulador Miogênico 5/metabolismo , Fator Regulador Miogênico 5/genética
3.
Food Funct ; 15(8): 4010-4020, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38501161

RESUMO

Cordyceps sinensis is a parasitic fungus known to induce immune responses. The impact of Cordyceps supplementation on stem cell homing and expansion to human skeletal muscle after exercise remains unexplored. In this study, we examined how pre-exercise Cordyceps supplementation influences cell infiltration, CD34+ cell recruitment, and Pax7+ cell expansion in human skeletal muscle after high-intensity interval exercise (HIIE) on a cycloergometer. A randomized, double-blind, placebo-controlled crossover study was conducted with 14 young adults (age: 24 ± 0.8 years). A placebo (1 g cornstarch) and Cordyceps (1 g Cordyceps sinensis) were administered before exercise (at 120% maximal aerobic power). Multiple biopsies were taken from the vastus lateralis for muscle tissue analysis before and after HIIE. This exercise regimen doubled the VEGF mRNA in the muscle at 3 h post-exercise (P = 0.006). A significant necrotic cell infiltration (+284%, P = 0.05) was observed 3 h after HIIE and resolved within 24 h. This response was substantially attenuated by Cordyceps supplementation. Moreover, we observed increases in CD34+ cells at 24 h post-exercise, notably accelerated by Cordyceps supplementation to 3 h (+51%, P = 0.002). This earlier response contributed to a four-fold expansion in Pax7+ cell count, as demonstrated by immunofluorescence double staining (CD34+/Pax7+) (P = 0.01). In conclusion, our results provide the first human evidence demonstrating the accelerated resolution of exercise-induced muscle damage by Cordyceps supplementation. This effect is associated with earlier stem cell recruitment into the damaged sites for muscle regeneration.


Assuntos
Cordyceps , Estudos Cross-Over , Exercício Físico , Músculo Esquelético , Humanos , Cordyceps/química , Adulto Jovem , Masculino , Exercício Físico/fisiologia , Adulto , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Método Duplo-Cego , Células-Tronco/efeitos dos fármacos , Antígenos CD34/metabolismo , Feminino , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
4.
Nat Cell Biol ; 25(12): 1758-1773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919520

RESUMO

Skeletal muscle stem and progenitor cells including those derived from human pluripotent stem cells (hPSCs) offer an avenue towards personalized therapies and readily fuse to form human-mouse myofibres in vivo. However, skeletal muscle progenitor cells (SMPCs) inefficiently colonize chimeric stem cell niches and instead associate with human myofibres resembling foetal niches. We hypothesized competition with mouse satellite cells (SCs) prevented SMPC engraftment into the SC niche and thus generated an SC ablation mouse compatible with human engraftment. Single-nucleus RNA sequencing of SC-ablated mice identified the absence of a transient myofibre subtype during regeneration expressing Actc1. Similarly, ACTC1+ human myofibres supporting PAX7+ SMPCs increased in SC-ablated mice, and after re-injury we found SMPCs could now repopulate into chimeric niches. To demonstrate ACTC1+ myofibres are essential to supporting PAX7 SMPCs, we generated caspase-inducible ACTC1 depletion human pluripotent stem cells, and upon SMPC engraftment we found a 90% reduction in ACTC1+ myofibres and a 100-fold decrease in PAX7 cell numbers compared with non-induced controls. We used spatial RNA sequencing to identify key factors driving emerging human niche formation between ACTC1+ myofibres and PAX7+ SMPCs in vivo. This revealed that transient regenerating human myofibres are essential for emerging niche formation in vivo to support PAX7 SMPCs.


Assuntos
Músculo Esquelético , Fator de Transcrição PAX7 , Regeneração , Células Satélites de Músculo Esquelético , Animais , Humanos , Camundongos , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Células-Tronco Pluripotentes , Células Satélites de Músculo Esquelético/fisiologia
5.
Elife ; 122023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963071

RESUMO

In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.


Humans contains around 650 skeletal muscles which allow the body to move around and maintain its posture. Skeletal muscles are made up of individual cells that bundle together into highly organized structures. If this group of muscles fail to develop correctly in the embryo and/or fetus, this can lead to muscular disorders that can make it painful and difficult to move. One way to better understand how skeletal muscles are formed, and how this process can go wrong, is to grow them in the laboratory. This can be achieved using induced pluripotent stem cells (iPSCs), human adult cells that have been 'reprogrammed' to behave like cells in the embryo that can develop in to almost any cell in the body. The iPSCs can then be converted into specific cell types in the laboratory, including the cells that make up skeletal muscle. Here, Mavrommatis et al. created a protocol for developing iPSCs into three-dimensional organoids which resemble how cells of the skeletal muscle look and arrange themselves in the fetus. To form the skeletal muscle organoid, Mavrommatis et al. treated iPSCs that were growing in a three-dimensional environment with various factors that are found early on in development. This caused the iPSCs to organize themselves in to embryonic and fetal structures that will eventually give rise to the parts of the body that contain skeletal muscle, such as the limbs. Within the organoid were cells that produced Pax7, a protein commonly found in myogenic progenitors that specifically mature into skeletal muscle cells in the fetus. Pax 7 is also present in 'satellite cells' that help to regrow damaged skeletal muscle in adults. Indeed, Mavrommatis et al. found that the myogenic progenitors produced by the organoid were able to regenerate muscle when transplanted in to adult mice. These findings suggest that this organoid protocol can generate cells that will give rise to skeletal muscle. In the future, these lab-grown progenitors could potentially be created from cells isolated from patients and used to repair muscle injuries. The organoid model could also provide new insights in to how skeletal muscles develop in the fetus, and how genetic mutations linked with muscular disorders disrupt this process.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Diferenciação Celular , Feto/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Desenvolvimento Muscular/fisiologia , Fator de Transcrição PAX7/metabolismo
6.
Stem Cell Res Ther ; 14(1): 294, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833800

RESUMO

Ever since its introduction as a genetic tool, the Cre-lox system has been widely used for molecular genetic studies in vivo in the context of health and disease, as it allows time- and cell-specific gene modifications. However, insertion of the Cre-recombinase cassette in the gene of interest can alter transcription, protein expression, or function, either directly, by modifying the landscape of the locus, or indirectly, due to the lack of genetic compensation or by indirect impairment of the non-targeted allele. This is sometimes the case when Cre-lox is used for muscle stem cell studies. Muscle stem cells are required for skeletal muscle growth, regeneration and to delay muscle disease progression, hence providing an attractive model for stem cell research. Since the transcription factor Pax7 is specifically expressed in all muscle stem cells, tamoxifen-inducible Cre cassettes (CreERT2) have been inserted into this locus by different groups to allow targeted gene recombination. Here we compare the two Pax7-CreERT2 mouse lines that are mainly used to evaluate muscle regeneration and development of pathological features upon deletion of specific factors or pathways. We applied diverse commonly used tamoxifen schemes of CreERT2 activation, and we analyzed muscle repair after cardiotoxin-induced injury. We show that consistently the Pax7-CreERT2 allele targeted into the Pax7 coding sequence (knock-in/knock-out allele) produces an inherent defect in regeneration, manifested as delayed post-injury repair and reduction in muscle stem cell numbers. In genetic ablation studies lacking proper controls, this inherent defect could be misinterpreted as being provoked by the deletion of the factor of interest. Instead, using an alternative Pax7-CreERT2 allele that maintains bi-allelic Pax7 expression or including appropriate controls can prevent misinterpretation of experimental data. The findings presented here can guide researchers establish appropriate experimental design for muscle stem cell genetic studies.


Assuntos
Haploinsuficiência , Células Satélites de Músculo Esquelético , Camundongos , Animais , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Haploinsuficiência/genética , Tamoxifeno/farmacologia , Integrases/genética , Integrases/metabolismo , Células-Tronco/metabolismo , Músculos , Células Satélites de Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo
7.
Nucleic Acids Res ; 51(14): 7254-7268, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37326021

RESUMO

Pioneer factors are transcription factors (TFs) that have the unique ability to recognise their target DNA sequences within closed chromatin. Whereas their interactions with cognate DNA is similar to other TFs, their ability to interact with chromatin remains poorly understood. Having previously defined the modalities of DNA interactions for the pioneer factor Pax7, we have now used natural isoforms of this pioneer as well as deletion and replacement mutants to investigate the Pax7 structural requirements for chromatin interaction and opening. We show that the GL+ natural isoform of Pax7 that has two extra amino acids within the DNA binding paired domain is unable to activate the melanotrope transcriptome and to fully activate a large subset of melanotrope-specific enhancers targeted for Pax7 pioneer action. This enhancer subset remains in the primed state rather than being fully activated, despite the GL+ isoform having similar intrinsic transcriptional activity as the GL- isoform. C-terminal deletions of Pax7 lead to the same loss of pioneer ability, with similar reduced recruitments of the cooperating TF Tpit and of the co-regulators Ash2 and BRG1. This suggests complex interrelations between the DNA binding and C-terminal domains of Pax7 that are crucial for its chromatin opening pioneer ability.


Assuntos
Cromatina , Fator de Transcrição PAX7 , Cromatina/metabolismo , DNA/metabolismo , Isoformas de Proteínas/genética , Humanos , Animais , Camundongos , Fator de Transcrição PAX7/metabolismo
8.
Development ; 150(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37366057

RESUMO

The earliest skeletal muscle progenitor cells (SMPCs) derived from human pluripotent stem cells (hPSCs) are often identified by factors expressed by a diverse number of progenitors. An early transcriptional checkpoint that defines myogenic commitment could improve hPSC differentiation to skeletal muscle. Analysis of several myogenic factors in human embryos and early hPSC differentiations found SIX1+PAX3+ co-expression was most indictive of myogenesis. Using dCas9-KRAB hPSCs, we demonstrate that early inhibition of SIX1 alone significantly decreased PAX3 expression, reduced PAX7+ SMPCs, and myotubes later in differentiation. Emergence of SIX1+PAX3+ precursors can be improved by manipulating seeding density, monitoring metabolic secretion and altering the concentration of CHIR99021. These modifications resulted in the co-emergence of hPSC-derived sclerotome, cardiac and neural crest that we hypothesized enhanced hPSC myogenic differentiation. Inhibition of non-myogenic lineages modulated PAX3 independent of SIX1. To better understand SIX1 expression, we compared directed differentiations to fetal progenitors and adult satellite cells by RNA-seq. Although SIX1 continued to be expressed across human development, SIX1 co-factor expression was dependent on developmental timing. We provide a resource to enable efficient derivation of skeletal muscle from hPSCs.


Assuntos
Células-Tronco Pluripotentes , Adulto , Humanos , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular/genética , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Proteínas de Homeodomínio/metabolismo
9.
Biol Res ; 56(1): 21, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147738

RESUMO

BACKGROUND: Satellite cells are tissue-specific stem cells primarily responsible for the regenerative capacity of skeletal muscle. Satellite cell function and maintenance are regulated by extrinsic and intrinsic mechanisms, including the ubiquitin-proteasome system, which is key for maintaining protein homeostasis. In this context, it has been shown that ubiquitin-ligase NEDD4-1 targets the transcription factor PAX7 for proteasome-dependent degradation, promoting muscle differentiation in vitro. Nonetheless, whether NEDD4-1 is required for satellite cell function in regenerating muscle remains to be determined. RESULTS: Using conditional gene ablation, we show that NEDD4-1 loss, specifically in the satellite cell population, impairs muscle regeneration resulting in a significant reduction of whole-muscle size. At the cellular level, NEDD4-1-null muscle progenitors exhibit a significant decrease in the ability to proliferate and differentiate, contributing to the formation of myofibers with reduced diameter. CONCLUSIONS: These results indicate that NEDD4-1 expression is critical for proper muscle regeneration in vivo and suggest that it may control satellite cell function at multiple levels.


Assuntos
Músculo Esquelético , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Proliferação de Células/fisiologia , Músculo Esquelético/metabolismo , Células-Tronco , Diferenciação Celular , Ubiquitinas/metabolismo , Desenvolvimento Muscular/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo
10.
Int J Biol Sci ; 19(4): 1049-1062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923937

RESUMO

A balance between muscle injury and regeneration is critical for sustaining muscle function during myogenesis. Melatonin is well recognized for its involvement in neuroprotective activities, immune system regulation and suppression of inflammatory responses. This study set out to provide evidence that melatonin improves muscle regeneration during skeletal muscle differentiation. We began with cloning a stable cell line expressing Pax7 knockdown C2C12 cells. We then investigated markers of muscle degradation and regeneration after treating growth medium and differentiated medium with melatonin. Bioinformatics analysis of RNA sequencing results revealed that melatonin regulates muscle differentiation and that Wnt cascades are involved in the mechanism of muscle differentiation. Screening of miRNA online databases revealed that miR-3475-3p is a specific binding site on Pax7 and acts as a negative regulator of Pax7, which is involved in melatonin-induced muscle differentiation. We then investigated the effects of melatonin treatment in the early stage of glycerol-induced skeletal muscle injury in mice. Rotarod performance, micro-computed tomography and immunohistochemistry findings showed that melatonin-induced increases in Pax7 expression rapidly rescue skeletal muscle differentiation and improve muscle fiber morphology in glycerol-induced muscle injury. Our data support the hypothesis that melatonin rapidly rescues skeletal muscle differentiation and the melatonin/Pax7 axis could therefore serve as an important therapeutic target to optimize muscle healing after injury.


Assuntos
Melatonina , Animais , Camundongos , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Glicerol/metabolismo , Microtomografia por Raio-X , Mioblastos/metabolismo , Diferenciação Celular/genética , Músculo Esquelético , Desenvolvimento Muscular/genética , Proliferação de Células , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo
11.
Sports Med ; 53(2): 457-480, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266373

RESUMO

BACKGROUND: Skeletal muscle has extraordinary regenerative capabilities against challenge, mainly owing to its resident muscle stem cells, commonly identified by Pax7+, which expediently donate nuclei to the regenerating multinucleated myofibers. This local reserve of stem cells in damaged muscle tissues is replenished by undifferentiated bone marrow stem cells (CD34+) permeating into the surrounding vascular system. OBJECTIVE: The purpose of the study was to provide a quantitative estimate for the changes in Pax7+ muscle stem cells (satellite cells) in humans following an acute bout of exercise until 96 h, in temporal relation to circulating CD34+ bone marrow stem cells. A subgroup analysis of age was also performed. METHODS: Four databases (Web of Science, PubMed, Scopus, and BASE) were used for the literature search until February 2022. Pax7+ cells in human skeletal muscle were the primary outcome. Circulating CD34+ cells were the secondary outcome. The standardized mean difference (SMD) was calculated using a random-effects meta-analysis. Subgroup analyses were conducted to examine the influence of age, training status, type of exercise, and follow-up time after exercise. RESULTS: The final search identified 20 studies for Pax7+ cells comprising a total of 370 participants between the average age of 21 and 74 years and 26 studies for circulating CD34+ bone marrow stem cells comprising 494 participants between the average age of 21 and 67 years. Only one study assessed Pax7+ cells immediately after aerobic exercise and showed a 32% reduction in exercising muscle followed by a fast repletion to pre-exercise level within 3 h. A large effect on increasing Pax7+ cell content in skeletal muscles was observed 24 h after resistance exercise (SMD = 0.89, p < 0.001). Pax7+ cells increased to ~ 50% above pre-exercise level 24-72 h after resistance exercise. For a subgroup analysis of age, a large effect (SMD = 0.81, p < 0.001) was observed on increasing Pax7+ cells in exercised muscle among adults aged > 50 years, whereas adults at younger age presented a medium effect (SMD = 0.64, p < 0.001). Both resistance exercise and aerobic exercise showed a medium overall effect in increasing circulating CD34+ cells (SMD = 0.53, p < 0.001), which declined quickly to the pre-exercise baseline level after exercise within 6 h. CONCLUSIONS: An immediate depletion of Pax7+ cells in exercising skeletal muscle concurrent with a transient release of CD34+ cells suggest a replenishment of the local stem cell reserve from bone marrow. A protracted Pax7+ cell expansion in the muscle can be observed during 24-72 h after resistance exercise. This result provides a scientific basis for exercise recommendations on weekly cycles allowing for adequate recovery time. Exercise-induced Pax7+ cell expansion in muscle remains significant at higher age, despite a lower stem cell reserve after age 50 years. More studies are required to confirm whether Pax7+ cell increment can occur after aerobic exercise. CLINICAL TRIAL REGISTRATION: Registered at the International Prospective Register of Systematic Reviews (PROSPERO) [identification code CRD42021265457].


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Músculo Esquelético/fisiologia , Exercício Físico , Células Satélites de Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo
12.
Sci Rep ; 12(1): 17149, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229514

RESUMO

Rhabdomyosarcoma is a soft tissue cancer that arises in skeletal muscle due to mutations in myogenic progenitors that lead to ineffective differentiation and malignant transformation. The transcription factors Pax3 and Pax7 and their downstream target genes are tightly linked with the fusion positive alveolar subtype, whereas the RAS pathway is usually involved in the embryonal, fusion negative variant. Here, we analyse the role of Pax3 in a fusion negative context, by linking alterations in gene expression in pax3a/pax3b double mutant zebrafish with tumour progression in kRAS-induced rhabdomyosarcoma tumours. Several genes in the RAS/MAPK signalling pathway were significantly down-regulated in pax3a/pax3b double mutant zebrafish. Progression of rhabdomyosarcoma tumours was also delayed in the pax3a/pax3b double mutant zebrafish indicating that Pax3 transcription factors have an unappreciated role in mediating malignancy in fusion negative rhabdomyosarcoma.


Assuntos
Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Animais , Proteína Forkhead Box O1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Fusão Oncogênica/genética , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Rabdomiossarcoma Embrionário/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(24): e2103615119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671424

RESUMO

Skeletal muscle atrophy is commonly associated with aging, immobilization, muscle unloading, and congenital myopathies. Generation of mature muscle cells from skeletal muscle satellite cells (SCs) is pivotal in repairing muscle tissue. Exercise therapy promotes muscle hypertrophy and strength. Primary cilium is implicated as the mechanical sensor in some mammalian cells, but its role in skeletal muscle cells remains vague. To determine mechanical sensors for exercise-induced muscle hypertrophy, we established three SC-specific cilium dysfunctional mouse models-Myogenic factor 5 (Myf5)-Arf-like Protein 3 (Arl3)-/-, Paired box protein Pax-7 (Pax7)-Intraflagellar transport protein 88 homolog (Ift88)-/-, and Pax7-Arl3-/--by specifically deleting a ciliary protein ARL3 in MYF5-expressing SCs, or IFT88 in PAX7-expressing SCs, or ARL3 in PAX7-expressing SCs, respectively. We show that the Myf5-Arl3-/- mice develop grossly the same as WT mice. Intriguingly, mechanical stimulation-induced muscle hypertrophy or myoblast differentiation is abrogated in Myf5-Arl3-/- and Pax7-Arl3-/- mice or primary isolated Myf5-Arl3-/- and Pax7-Ift88-/- myoblasts, likely due to defective cilia-mediated Hedgehog (Hh) signaling. Collectively, we demonstrate SC cilia serve as mechanical sensors and promote exercise-induced muscle hypertrophy via Hh signaling pathway.


Assuntos
Cílios , Força Muscular , Condicionamento Físico Animal , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Cílios/fisiologia , Terapia por Exercício , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia
15.
Cell Rep ; 39(11): 110939, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705041

RESUMO

Skeletal muscle regeneration relies on satellite cells that can proliferate, differentiate, and form new myofibers upon injury. Emerging evidence suggests that misregulation of satellite cell fate and function influences the severity of Duchenne muscular dystrophy (DMD). The transcription factor Pax7 determines the myogenic identity and maintenance of the pool of satellite cells. The circadian clock regulates satellite cell proliferation and self-renewal. Here, we show that the CLOCK-interacting protein Circadian (CIPC) a negative-feedback regulator of the circadian clock, is up-regulated during myoblast differentiation. Specific deletion of Cipc in satellite cells alleviates myopathy, improves muscle function, and reduces fibrosis in mdx mice. Cipc deficiency leads to activation of the ERK1/2 and JNK1/2 signaling pathways, which activates the transcription factor SP1 to trigger the transcription of Pax7 and MyoD. Therefore, CIPC is a negative regulator of satellite cell function, and loss of Cipc in satellite cells promotes muscle regeneration.


Assuntos
Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular/genética , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/metabolismo
16.
Technol Health Care ; 30(S1): 371-382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35124612

RESUMO

BACKGROUND: A low-frequency electromagnetic field (LF-EMF) exerts important biological effects on the human body. OBJECTIVE: We previously studied the immunity and atrophy of gastrocnemius muscles in rats with spinal cord injuries and found that LF-EMF with a magnetic flux density of 1.5 mT exerted excellent therapeutic and preventive effects on reducing myotubes and increasing spatium intermusculare. However, the effects of LF-EMF on all stages of skeletal myogenesis, such as activation, proliferation, differentiation, and fusion of satellite cells to myotubes as stimulated by myogenic regulatoryfactors (MRFs), have not been fully elucidated. METHODS: This study investigated the optimal LF-EMF magnetic flux density that exerted maximal effects on all stages of C2C12 cell skeletal myogenesis as well as its impact on regulatory MRFs. RESULTS: The results showed that an LF-EMF with a magnetic flux density of 2.0 mT could activate C2C12 cells and upregulate the proliferation-promoting transcription factor PAX7. On the other hand, 1.5 mT EMF could upregulate the expression of MyoD and myogenin. CONCLUSION: LF-EMF could prevent the disappearance of myotubes, with different magnetic flux densities of LF-EMF exerting independent and positive effects on skeletal myogenesis such as satellite cell activation and proliferation, muscle cell differentiation, and myocyte fusion.


Assuntos
Campos Eletromagnéticos , Proteína MyoD , Miogenina , Fatores de Transcrição Box Pareados , Animais , Diferenciação Celular , Desenvolvimento Muscular , Músculo Esquelético , Proteína MyoD/metabolismo , Miogenina/metabolismo , Fator de Transcrição PAX7/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Ratos
17.
Exp Cell Res ; 411(2): 112990, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973262

RESUMO

Human pluripotent stem cells (hPSCs) provide a human model for developmental myogenesis, disease modeling and development of therapeutics. Differentiation of hPSCs into muscle stem cells has the potential to provide a cell-based therapy for many skeletal muscle wasting diseases. This review describes the current state of hPSCs towards recapitulating human myogenesis ex vivo, considerations of stem cell and progenitor cell state as well as function for future use of hPSC-derived muscle cells in regenerative medicine.


Assuntos
Desenvolvimento Muscular/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Diferenciação Celular/fisiologia , Humanos , Modelos Biológicos , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia
18.
Sci Rep ; 12(1): 1426, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082321

RESUMO

With several therapeutic strategies for facioscapulohumeral muscular dystrophy (FSHD) entering clinical testing, outcome measures are becoming increasingly important. Considering the spatiotemporal nature of FSHD disease activity, clinical trials would benefit from non-invasive imaging-based biomarkers that can predict FSHD-associated transcriptome changes. This study investigated two FSHD-associated transcriptome signatures (DUX4 and PAX7 signatures) in FSHD skeletal muscle biopsies, and tested their correlation with a variety of disease-associated factors, including Ricci clinical severity score, disease duration, D4Z4 repeat size, muscle pathology scorings and functional outcome measures. It establishes that DUX4 and PAX7 signatures both show a sporadic expression pattern in FSHD-affected biopsies, possibly marking different stages of disease. This study analyzed two imaging-based biomarkers-Turbo Inversion Recovery Magnitude (TIRM) hyperintensity and fat fraction-and provides insights into their predictive power as non-invasive biomarkers for FSHD signature detection in clinical trials. Further insights in the heterogeneity of-and correlation between-imaging biomarkers and molecular biomarkers, as provided in this study, will provide important guidance to clinical trial design in FSHD. Finally, this study investigated the role of infiltrating non-muscle cell types in FSHD signature expression and detected potential distinct roles for two fibro-adipogenic progenitor subtypes in FSHD.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Fator de Transcrição PAX7/genética , Transcriptoma , Biomarcadores/metabolismo , Biópsia , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/diagnóstico por imagem , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Fator de Transcrição PAX7/metabolismo , Índice de Gravidade de Doença , Células-Tronco/metabolismo , Células-Tronco/patologia
19.
Dev Biol ; 483: 39-57, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990731

RESUMO

Neural crest (NC) cells are a dynamic population of embryonic stem cells that create various adult tissues in vertebrate species including craniofacial bone and cartilage and the peripheral and enteric nervous systems. NC development is thought to be a conserved and complex process that is controlled by a tightly-regulated gene regulatory network (GRN) of morphogens, transcription factors, and cell adhesion proteins. While multiple studies have characterized the expression of several GRN factors in single species, a comprehensive protein analysis that directly compares expression across development is lacking. To address this lack in information, we used three closely related avian models, Gallus gallus (chicken), Coturnix japonica (Japanese quail), and Pavo cristatus (Indian peafowl), to compare the localization and timing of four GRN transcription factors, PAX7, SNAI2, SOX9, and SOX10, from the onset of neurulation to migration. While the spatial expression of these factors is largely conserved, we find that quail NC cells express SNAI2, SOX9, and SOX10 proteins at the equivalent of earlier developmental stages than chick and peafowl. In addition, quail NC cells migrate farther and more rapidly than the larger organisms. These data suggest that despite a conservation of NC GRN players, differences in the timing of NC development between species remain a significant frontier to be explored with functional studies.


Assuntos
Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Movimento Celular/genética , Galinhas/genética , Coturnix/embriologia , Coturnix/genética , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/metabolismo , Neurulação/genética , Animais , Embrião de Galinha , Galinhas/metabolismo , Coturnix/metabolismo , Feminino , Redes Reguladoras de Genes , Crista Neural/embriologia , Tubo Neural/embriologia , Tubo Neural/metabolismo , Oviparidade/genética , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
20.
J Biol Chem ; 298(1): 101516, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942145

RESUMO

The thymus is the central immune organ, but it is known to progressively degenerate with age. As thymus degeneration is paralleled by the wasting of aging skeletal muscle, we speculated that the thymus may play a role in muscle wasting. Here, using thymectomized mice, we show that the thymus is necessary for skeletal muscle regeneration, a process tightly associated with muscle aging. Compared to control mice, the thymectomized mice displayed comparable growth of muscle mass, but decreased muscle regeneration in response to injury, as evidenced by small and sparse regenerative myofibers along with inhibited expression of regeneration-associated genes myh3, myod, and myogenin. Using paired box 7 (Pax7)-immunofluorescence staining and 5-Bromo-2'-deoxyuridine-incorporation assay, we determined that the decreased regeneration capacity was caused by a limited satellite cell pool. Interestingly, the conditioned culture medium of isolated thymocytes had a potent capacity to directly stimulate satellite cell expansion in vitro. These expanded cells were enriched in subpopulations of quiescent satellite cells (Pax7highMyoDlowEdUpos) and activated satellite cells (Pax7highMyoDhighEdUpos), which were efficiently incorporated into the regenerative myofibers. We thus propose that the thymus plays an essential role in muscle regeneration by directly promoting satellite cell expansion and may function profoundly in the muscle aging process.


Assuntos
Músculo Esquelético , Regeneração , Células Satélites de Músculo Esquelético , Timo , Animais , Diferenciação Celular , Proliferação de Células , Camundongos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Timo/metabolismo , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...